

Reg. No. :

Name :

Fourth Semester B.Tech. Degree Examination, February 2016 (2013 Scheme)

13.401 : ENGINEERING MATHEMATICS - III (BCHMNPSU)

Time: 3 Hours Max. Marks: 100

PART-A

Answer all questions. Each question carries 4 marks.

- 1. If f(z) and $\overline{f(z)}$ are analytic, then prove that f(z) is a constant.
- 2. Define critical point and invariant point of a transformation. Find the critical points and invariant points of $w = \frac{5-4z}{4z-2}$.
- 3. Evaluate $\int_C |z| \overline{z} dz$ where C consists of the upper simi circle |z| = 1 and the segment $-1 \le x \le 1$.
- 4. Solve $x = \sqrt[3]{25}$ by Newton-Raphson method, correct to three places of decimals.
- 5. Using Taylor's series method, find y to five places of decimals when x = 1.3, given that $dy = (x^2y 1)dx$ and y = 2 when x = 1.

PART-B

Answer one full question from each Module. Each question carries 20 marks.

Module - I

- 6. a) Prove that $f(z) = \frac{x^3(1+i) y^3(1-i)}{x^2 + y^2}$, $z \ne 0$ and f(0) = 0 is continuous and satisfies CR equations at the origin, but f'(0) does not exist.
 - b) Find the analytic function f(z) = u + iv if $u = e^{-x}(2xy\cos y + (y^2 x^2)\sin y)$.
 - c) Discuss the transformation $w = z + \frac{1}{z}$ notes the lebise sauge years.

- 7. a) Show that $u(x, y) = x^2 y^2$ and $v(x, y) = \frac{-y}{x^2 + y^2}$ are both harmonic, but u + iv is not analytic.
 - b) Determine the region of the w-plane into which the triangular region bounded by x = 1, y = 1 and x + y = 1 is mapped by $w = z^2$.
 - c) Find the bilinear transformation which maps (2, i, -2) into the points (1, i, -1).

Module - II

- 8. a) Evaluate $\int_{|z|=3} \frac{e^z}{(z-2)(z+1)^2(z-1)} dz$ using Cauchy's integral formula.
 - b) Find the Laurent's series of $\frac{7z-2}{z(z+1)(z-2)}$ in 1 < |z+1| < 3.
 - c) Show that $\int_{0}^{\infty} \frac{dx}{1+x^6} = \frac{\pi}{3}$.
- 9. a) Evaluate $\int_{|z|=1}^{\infty} z^4 e^{\frac{1}{2}z} dz$.
 - b) Evaluate $\int_{0}^{\pi} \frac{a}{a^2 + \sin^2 \theta} d\theta$.
 - c) Expand ze^z about z = 1.

Module - III

- 10. a) Find a real roof of the equation 3x cosx 1 = 0 which lies between 0 and
 1 by Regula Falsi method.
 - b) By means of Lagrange's interpolation formula, prove that $y_3 = 0.05(y_0 + y_6) 0.3(y_1 + y_5) + 0.75(y_2 + y_4)$.
 - c) Solve by Gauss Seidel iteration method $10 \times -2y z w = 3$, -2x + 10y z w = 15, -x y + 10z 2w = 27, -x y 2z + 10w = -9.

- 11. a) Find a real root of the equation $x^3 x^2 + x 7 = 0$ lying between 2 and 3 using bisection method correct to three decimal places.
 - b) From the following table, find the number of students who obtained marks in mathematics between 40 and 70.

Marks:

55-65 65-75 75-85

No. of Students:

18

64

50

28

c) By Gauss elimination method, solve

$$x + y + 2z - w = 5$$
, $x + 3y + 2z + w = 17$, $x + y + 3z + 2w = 20$, $x + 3y + 4z + 2w = 27$.

Module - IV

- 12. a) Find the approximate value of $\int_{0}^{4} \sqrt{64 x^2} dx$ by (i) Trapezoidal rule (ii) Simpson's rule, by taking h = 0.5.
 - b) Solve $\frac{dy}{dx} = x 2y$ for x = 0.2 by using RK method. Initial values are x = 0, y = 1 and h = 0.1.
- 13. a) Solve the Laplace's equation $u_{xx} + u_{yy} = 0$ in the square region $0 \le x \le 4$, $0 \le y \le 4$ with boundary conditions u(0, y) = 0, u(4, y) = 8 + 2y, u(x, 0) = 2x and $u(x, 4) = x^2$ with h = 1.
 - b) Use modified Euler's method to find the value of y(1.1) when $\frac{dy}{dx} = x + xy$, y(1) = 1, taking h = 0.05.